태그 보관용: 아연 다이캐스팅

아연 다이캐스팅

다이 캐스팅이란 무엇인가요?

다이캐스팅은 용융 금속을 금형 캐비티에 압입하는 것이 특징인 금속 주조 공정입니다. 금형 캐비티는 가공 중에 작업하는 두 개의 경화 공구강 금형을 사용하여 만들어지며 사출 금형과 유사하게 작동합니다. 대부분의 다이캐스팅은 비철금속, 특히 아연, 구리, 알루미늄, 마그네슘, 주석, 납 및 주석 기반 합금으로 만들어집니다. 던져지는 금속의 종류에 따라 열 또는 냉간 엔진이 사용됩니다.

아연 다이캐스팅

아연 다이캐스팅

그리고 아연 다이캐스팅 공정은 건축 및 산업 분야에서 부품을 만드는 데 매우 인기가 있지만 가장 일반적인 응용 분야는 자동차 산업입니다. 사실 자동차에는 다이캐스팅을 통해 만들 수 있는 부품이 다양하며, 현대의 다이캐스팅 공정은 원래 자동차 산업을 위해 시작되었습니다.

주조 공정은 주조 후 추가 가공이 필요 없는 경우가 많으며, 정확도가 99.8%에 달할 뿐만 아니라 주조된 제품은 마감 처리가 잘 되어 있어 그대로 사용할 수 있습니다. 아연 다이캐스팅의 사용은 자동차 산업에서 거의 28%에 달하며, 건축 및 하드웨어 부문이 그 뒤를 잇고 있습니다.

아연은 자동차 부품 산업에서 가장 중요한 금속 중 하나로, 특히 도어락 하우징, 폴, 기어, 안전벨트 시스템의 리트랙터 풀리 등의 제품뿐만 아니라 캠샤프트 및 센서 부품에도 사용됩니다. 이 금속과 그 합금을 사용하면 다른 소재로는 불가능한 강도, 연성 및 유연성을 달성할 수 있습니다.

또한 아연은 다른 소재로는 불가능한 엄격한 공차로 고품질의 미적 부품을 제작하고 기계 부품이나 기어의 엠보싱 및 홈을 만드는 데 적합한 선택이 될 수 있습니다.

자동차의 아연 다이캐스팅 메커니즘

앞서 말했듯이 자동차 산업은 가장 일반적인 다이캐스팅 응용 분야로, 아연과 그 합금을 사용하면 형상 형태에 대한 엄격하고 좁은 허용 오차로 높은 미적 품질을 달성할 수 있는 부품을 생산할 수 있습니다. 아연 합금은 이미 인상적인 아연의 부식 방지 특성을 개선하는 등 많은 이점 때문에 코팅에도 사용됩니다.

아래에서 아연 도금의 여러 가지 가능한 예를 확인할 수 있습니다:

  • 인테리어 미학 섹션
  • 선루프 섹션
  • 기계 부품
  • 엔진 및 기타 언더후드 구성 요소
  • 파워 스티어링 시스템
  • 부품 및 브레이크 시스템
  • 에어컨 구성 요소 및 시스템
  • 섀시 하드웨어
  • 안전벨트 시스템의 부품
  • 기후 제어의 구성 요소
  • 연료 시스템

아연 다이 캐스팅의 장점:

  • 다양한 형태와 양식을 제공하는 효율적이고 경제적인 프로세스입니다.
  • 고속 프로덕션
  • 치수 정확도 및 안정성
  • 강도 및 무게
  • 몇 가지 마감 기법을 사용할 수 있습니다.
  • 간단한 조립

다이캐스팅 공정은 납과 납 합금, 마그네슘과 구리 합금의 사용으로 시작되었으며, 1930년대에는 오늘날에도 사용되고 있는 많은 현대식 합금을 사용하게 되었습니다. 이 공정은 주조 저압 사출에서 평방인치당 4,500파운드의 현대식 고압 사출로 발전했습니다. 현대식 공정은 표면 마감이 우수한 무결성 높은 깨끗한 주조 형태를 생산할 수 있습니다.

아연 주조 합금은 강하고 내구성이 뛰어나며 비용 효율적인 엔지니어링 소재입니다. 기계적 특성은 경쟁력이 있으며 일반적으로 주조 알루미늄, 마그네슘, 청동, 플라스틱 및 대부분의 주철보다 높습니다.

아연 다이캐스팅

압력 사출을 이용한 다이캐스팅 공정은 1800년대 중반까지 이어졌습니다. 주석과 납이 사용되었지만 아연과 알루미늄 합금이 도입되면서 주석과 납의 사용은 사라졌습니다. 이 공정은 수년에 걸쳐 저압 사출 금형에서 최대 4,500psi의 압력에서 주조 금형으로 발전해 왔습니다. 이 공정을 통해 우수한 최종 표면을 가진 고품질 제품을 만들 수 있습니다.

다이캐스팅은 다양한 형상을 제작할 수 있는 경제적이고 효율적인 공정입니다. 다른 제조 기술보다 우수한 것으로 간주되며 내구성과 심미성이 뛰어나고 기계의 다른 부품과 완벽하게 결합됩니다. 다이잉에는 많은 장점이 있습니다. 그중에서도 가장 큰 장점은 다른 대량 생산 방식보다 높은 허용 오차 수준으로 복잡한 형태를 생산할 수 있다는 점입니다. 새로운 금형 도구를 추가하기 전에 수천 개의 동일한 인쇄물을 생산할 수 있습니다.

아연 다이캐스팅

아연 다이캐스팅

고압 주조는 주조기로 녹인 알루미늄을 강철이나 금형에 극도의 압력을 가해 주입하여 만들고자 하는 모형의 디자인과 세부 부품을 만드는 제조 공정입니다. 수 톤의 범용 조임으로 주조. 이 기록은 매트릭스에 가해지는 압력의 양을 반영합니다. 엔진 크기는 400톤에서 4000톤까지 다양합니다.

다이캐스팅 공정을 사용하면 다른 공정에 비해 많은 이점이 있습니다. 다이캐스팅은 벽이 더 얇고 크기 제한이 좁은 부품을 생산하며 공정 속도를 높일 수 있습니다. 인건비와 마감 처리 비용도 다이캐스팅이 가장 저렴합니다. 이 공정은 공차가 좁은 복잡한 형태를 쉽게 얻을 수 있습니다. 위조 공정과 달리 이 공정으로 생성된 제품에 커널을 삽입할 수 있습니다.

막대나 튜브에서 얻을 수 없는 형태는 주조로 쉽게 얻을 수 있습니다. 작업 공정의 수가 줄어들어 폐기물을 줄일 수 있습니다.

다이캐스팅은 안정적이고 치수 및 내구성이 뛰어난 부품이 필요할 때 사용됩니다. 다이캐스팅은 열을 견디고 좋은 기계의 각 부품에 중요한 조건인 공차 수준을 잘 유지합니다. 다른 프린팅 방법으로 만든 부품보다 더 강하고 가볍습니다. 부품을 용접하거나 나사로 고정하지 않기 때문에 효율성이 크게 향상됩니다. 또 다른 장점은 출시와 함께 얻을 수 있는 많은 해결 방법이 있다는 것입니다. 표면을 매끄럽게 하거나 질감을 줄 수 있어 적용과 사용이 용이합니다.

이 정보가 도움이 되었기를 바라며, 다음에 대한 기사를 읽어주셔서 감사합니다. 아연 다이캐스팅.

아연 다이캐스팅 부품 을 핫챔버 공정이라고 합니다. 아연(zamak)를 고온에서 가열하여 용융된 물질을 강제로 아연 다이캐스팅 금형 고압을 가하여 금형과 유사한 모양의 제품을 생산합니다. 금속이 다이를 통과하면서 통풍구를 통해 공기가 빠져나갑니다. 다이가 가득 차면 굳을 때까지 고압이 유지되고 다이가 분리되어 완성된 아연 주물이 방출됩니다. 주조 후에는 일반적으로 추가 수정이 필요하지 않습니다.

사용 아연 다이 캐스팅

아연(자막) 은 높은 강도, 정확성, 연성, 주조 용이성, 높은 열 및 전기 전도성, 긴 수명으로 잘 알려져 있습니다. 따라서 아연 다이캐스팅은 고품질의 산업용 및 건축 자재 제조에 적용됩니다. 다이캐스팅은 자동차 산업에서 시작되었으며 여전히 자동차 부품 제조에 널리 사용되고 있습니다. 도어 잠금 장치 케이스, 풀리 및 캠 샤프트는 아연 주조로 만들어진 자동차 부품 중 일부입니다. 건설 산업에서 아연 다이캐스팅은 도어 손잡이, 수도꼭지, 지붕과 같은 부품 제조에 활용됩니다. 반면에 전기 피팅과 같은 아연 주조 기계 부품이 많이 있습니다.

아연 다이캐스팅 공정

아연은 용융 온도가 낮기 때문에 핫 챔버 공정을 사용하여 주조합니다. 콜드 챔버 공정은 다음과 같이 용융 온도가 높은 금속의 주조에 적용됩니다. 알루미늄. 아연 다이캐스팅 공정에는 금속 준비, 다이 준비 및 마감 작업이 포함됩니다. 금형 준비와 금속 준비로 시작됩니다. 특히 금형은 제조되는 부품에 따라 한 번 또는 여러 번 사용할 수 있습니다. 이전에 사용한 적이 있다면 주조 금속을 쉽게 제거할 수 있도록 윤활유를 발라야 합니다. 그 후 이젝터 다이의 절반과 커버 다이의 절반을 나사로 조입니다. 커버 다이 반쪽에는 용융 금속이 주입되는 스프 루가 있고 이젝터 다이에는 주물을 제거하기 위한 이젝터 핀이 있습니다.
주사위를 준비한 다음 ZA를 녹이거나 자말락 합금 용광로에서. 제품의 물리적 특성에 따라 합금의 선택이 결정됩니다. 금속의 경도와 강도로 인해 용광로 온도는 일반적으로 매우 높습니다. 이 단계에서 금속의 산화된 부분을 제거하여 완제품의 순도를 높입니다. 완성된 합금의 물리적 특성을 개선하기 위해 다양한 화학 물질을 첨가할 수 있습니다.
용융 금속이 준비되면 고압으로 공급 시스템에 주입됩니다. 대부분의 시스템에는 효율성과 대량 생산을 위해 여러 개의 다이가 있습니다. 압력이 높아지면 용융 금속은 아연 합금 가 금형에 최대한 빨리 들어가고, 용융 금속에 공기가 들어가지 않으며, 통풍구를 통해 금형 내부의 공기가 배출됩니다. 다이를 채운 후에는 압력을 더 높여서 아연 합금 주조 굳어집니다. 이 과정에는 물을 사용하여 냉각하는 과정도 포함됩니다. 그런 다음 두 개의 다이를 분리하고 금속 주물을 제거합니다. 그 다음에는 공급 시스템을 청소하여 플래시를 제거합니다. 제품의 최종 용도에 따라 추가 마무리를 수행할 수 있습니다. 최종 제품에서 제거된 러너와 플래시는 일반적으로 재활용됩니다.
알루미늄 다이캐스팅

알루미늄, 마그네슘, 아연 및 진공 다이캐스팅 요구 사항을 충족하는 용량.

알루미늄 다이 캐스팅

고품질 제공 알루미늄 다이캐스팅 부품 경쟁력 있는 가격으로 생산하려면 모뎀 다이 캐스팅 장비가 필요합니다. 극단적인 냉각 온도가 금형에 미치는 영향을 줄이기 위해 CNM TECH는 금형 냉각 시스템을 물에서 오일로 전환하고 있습니다. 오일은 더 따뜻한 다이 온도를 유지하여 보다 균일한 주조에 기여하고 부품 비용의 중요한 요소인 다이 수명을 연장합니다.

CNM TECH 다이캐스팅 회사 는 다이캐스팅 기계의 작동에 로봇 제어를 적용하고 있습니다. 이를 통해 생산 속도를 크게 높일 수 있으며, 이는 비용 관리와 납기 요건 충족에 모두 중요합니다. 또한 직원의 기술과 경험을 더 잘 활용할 수 있는 방식으로 인력을 활용할 수 있습니다.

생산 비용을 낮추기 위해 CNM TECH 다이캐스팅 제조업체 는 에너지 효율이 높고 소량의 새로운 알루미늄 용해로를 개발하여 특허를 받았습니다. 알루미늄을 소량으로도 효율적으로 녹일 수 있기 때문에 다양한 합금의 알루미늄을 주조기에 동시에 공급할 수 있습니다. 주조 기계는 대형 용광로가 적절한 합금을 공급할 때까지 기다릴 필요가 없습니다. 용광로에 어떤 합금이 들어가느냐에 따라 일정이 달라지지 않습니다.

아연 다이 캐스팅

높은 충격 강도, 저렴한 비용 및아연 다이 캐스팅가까운 치수 제한은 중요한 설계 고려 사항입니다, 아연 다이캐스팅 은 중요한 역할을 합니다. 아연은 일반적으로 알루미늄보다 더 높은 생산 속도를 허용하며 더 얇은 단면으로 부품을 설계할 수 있습니다. 이렇게 제작된 부품은 부식에 강하고 다양한 아름다운 마감 처리가 가능합니다.

자동 추출기가 장착된 다이캐스팅 기계는 높은 생산 속도와 균일한 품질을 유지합니다.

진공 다이 캐스팅

진공 다이캐스팅은 다공성이 적은 부품을 만들기 때문에 많은 주조 구매자가 선호합니다. 400톤의 클램핑력을 갖춘 CNM TECH의 Vert-a-Cast 기계는 수동으로 작동하는 수평 기계보다 훨씬 빠른 속도로 주물을 자동으로 생산할 수 있습니다.

진공 다이캐스팅은 10년 동안 CNM TECH 기능으로 중요한 다공성 사양을 충족하는 유일한 경제적인 방법인 경우가 많습니다.

금형에 대한 유지보수, 수리, 변경 및 수정은 CNM TECH의 완비된 공구 및 금형 공장에서 신속하게 이루어집니다.

합금 재료는 중앙 용광로에서 용융, 용해 및 세척된 후 다이캐스팅 장비로 옮겨집니다.

다이캐스팅 요구 사항이 있는 경우 견적을 위해 요구 사항을 보내주시기 바랍니다.

금속 주조 서비스 를 사용하여 자유롭게 흐르는 액체 금속을 성형하는 것을 포함합니다. 금형, 금형 또는 패턴 주조 는 생산 특성상 일반적으로 대략적으로 마무리됩니다. 대부분의 경우 주조 공정의 버 및 기타 아티팩트를 제거하기 위해 추가 마감 처리가 필요합니다. 금속 주조 서비스는 다양한 부품과 완제품을 디자인하는 데 사용됩니다. 간단한 못과 패스너부터 엔진 블록까지 금속 주조 서비스를 사용하여 모든 것을 제작할 수 있습니다. 일반적인 금속 주조 공정은 다음과 같습니다. 모래 주조, 다이 주조, 영구 주형 주조, 인베스트먼트 주조, 원심 주조 및 로스트 폼 주조.

모래 주조

모래 주조 은 대형 부품(일반적으로 철뿐만 아니라 청동, 황동, 알루미늄)을 만드는 데 사용됩니다. 용융 금속을 모래(천연 또는 합성)로 만든 주형 캐비티에 붓습니다. 모래 주물은 일반적으로 표면이 거칠고 때로는 표면 불순물과 표면 변형이 있습니다.

아연 다이캐스팅

아연 다이캐스팅

다이캐스팅에는 재사용 가능한 금형 또는 금형 는 주조 생산에 사용됩니다. 금형에는 완제품의 인상과 함께 작동, 공급 및 배출 시스템이 포함되어 있습니다. 금형은 규칙적인 사이클을 통해 주입된 금속의 열을 빠르게 발산할 수 있습니다. 액체 금속이 충분히 냉각되면 금형을 열고 주물을 제거하여 마무리할 수 있습니다.

영구 금형 주조

In 영구 금형 주조용융 금속을 주철 주형에 붓고 세라믹 주형 세척제로 코팅합니다. 코어는 금속, 모래, 모래 껍질 또는 기타 재료일 수 있습니다. 완료되면 주형이 열리고 주물이 배출됩니다.

 

투자 주조 서비스 금속 다이에 특수 왁스를 주입하여 패턴을 성형하는 방식입니다. 패턴은 왁스 러너 시스템을 중심으로 클러스터로 조립됩니다. 그런 다음 패턴의 '트리'를 8~10겹의 내화 재료로 코팅합니다. 어셈블리를 가열하여 왁스를 제거합니다. 뜨거운 금형이 주조되고 냉각되면 충격, 진동, 그릿 블라스팅, 고압 물 블라스팅 또는 화학적 용해를 통해 금형 재료가 제거되고 주조물은 러너 시스템에서 제거됩니다.

원심 주조

원심 주조 서비스는 원통형 주물을 생산하는 데 사용됩니다. 원심 주조에서는 용융 금속이 부어질 때 영구 금형이 축을 중심으로 고속으로 회전합니다. 용융 금속은 원심력으로 내부 금형 벽을 향해 던져져 응고됩니다. 주물은 일반적으로 외경이 매우 미세한 미세 입자 주조로, 파이프의 일반적인 요구 사항인 대기 부식에 강합니다. 내경에는 더 많은 불순물과 내포물이 있으며, 이를 가공하여 제거할 수 있습니다.

마그네슘 다이캐스팅

마그네슘 다이캐스팅

분실된 폼 캐스팅

로스트 폼 주조(LFC)는 금속 주조 서비스입니다. 폼으로 채워진 패턴을 사용하여 주물을 생산합니다. 폼을 패턴에 주입하여 빈 공간을 남기지 않고 모든 영역을 채웁니다. 용융 금속이 패턴에 주입되면 폼이 연소되어 주물의 형태가 만들어집니다.

다이 캐스팅

다이캐스팅 및 금속 주조 재사용 가능한 금형 또는 금형을 사용하여 주조를 생산하는 여러 공정이 포함됩니다. 금형은 규칙적인 주기로 주조된 금속의 열을 빠르게 발산할 수 있습니다. 액체 금속이 충분히 냉각되면 금형 또는 주형을 열고 주물을 제거하여 완성할 수 있습니다.

 

에서 다이캐스팅 공정를 사용하여 용융 금속을 재사용 가능한 금형 또는 다이에 압력을 가하여 주입합니다. 다이에는 주물의 인상과 함께 작동, 공급 및 배출 시스템이 포함되어 있습니다. 금형은 규칙적인 사이클을 통해 주입된 금속의 열을 빠르게 발산할 수 있습니다. 액체 금속이 충분히 냉각되면 금형 또는 금형을 열고 금속 주물을 제거하여 마무리할 수 있습니다.

고압 다이캐스팅

그리고 고압 다이캐스팅 공정이 가장 널리 사용되며, 전체 경합금 주조 생산량의 약 50%를 차지합니다. 저압 다이캐스팅 현재 생산량의 약 20%를 차지하고 있으며 그 사용량이 증가하고 있습니다. 중력 다이 캐스팅 최근 도입된 진공 다이캐스팅 및 스퀴즈 주조 공정의 작지만 증가하는 기여도를 제외하고 나머지를 차지합니다. 저압 및 중력 다이캐스팅 금형의 설계는 다이 충진 개선, 최적화된 응고 패턴 및 최대 수율을 위해 설계되었습니다. 중력 다이캐스팅은 대량 생산 및 완전 기계화 주조에 적합합니다. 저압 다이 캐스팅 는 특히 다음과 같은 경우에 적합합니다.

알루미늄 다이캐스팅

알루미늄 다이 캐스팅

회전축을 중심으로 대칭을 이루는 부품을 생산합니다. 경량 자동차 바퀴는 일반적으로 이 기술로 제조됩니다.

다이캐스팅 금속은 매우 다양할 수 있으며, 각기 다른 다이캐스팅 회사 는 누구나 또는 여러 명과 함께 작업할 수 있습니다. 가장 일반적인 금속 주조 유형은 다음과 같습니다. 알루미늄 다이캐스팅황동 다이캐스팅, 납 다이캐스팅(모형 다이캐스팅에 가장 많이 사용됨), 마그네슘 다이캐스팅아연 다이캐스팅.

이 모든 정보가 참고용으로 충분하길 바라지만, 더 자세한 정보를 알고 싶으시면 전화나 이메일로 문의해 주시기 바랍니다.

고압 다이캐스팅 부품

다이캐스팅이란?

다이캐스팅은 제조 정확한 치수와 선명하고 매끄러운 표면 또는 질감의 금속 부품을 생산하기 위한 공정입니다. 이 공정은 고압으로 용융된 금속을 재사용 가능한 금속 금형에 강제로 밀어 넣는 방식으로 이루어집니다. 이 공정은 종종 원자재와 완제품 사이의 최단 거리로 설명됩니다. '다이캐스팅'이라는 용어는 완성된 부품을 설명할 때도 사용됩니다.
"중력 다이캐스팅"이라는 용어는 다음에서 제조된 주물을 의미합니다. 금속 금형 중력 헤드 아래에 있습니다. 다음과 같이 알려져 있습니다. 영구 금형 주조 미국 및 캐나다에서. '다이 캐스팅'이라고 부르는 것"를 "고압 다이캐스팅'라는 문구가 있습니다.

다이캐스팅은 어떻게 생산되나요?

먼저, 수만 개의 주물을 연속적으로 빠르게 생산할 수 있는 강철 주형은 주물을 제거할 수 있도록 최소 두 개의 섹션으로 만들어져야 합니다. 이 섹션은 기계에 단단히 장착되며 하나는 고정되어 있고(고정 다이 반쪽) 다른 하나는 움직일 수 있도록 배열됩니다(인젝터 다이 반쪽). 주조 사이클을 시작하기 위해 두 개의 다이 반쪽은 다이 캐스팅 기계에 의해 서로 단단히 고정됩니다. 용융 금속이 다이 캐비티에 주입되어 빠르게 응고됩니다. 다이 반쪽이 분리되고 주물이 배출됩니다. 다이캐스팅 다이는 주물의 복잡성에 따라 슬라이드, 코어 또는 기타 섹션을 움직일 수 있는 단순하거나 복잡한 형태가 될 수 있습니다.
다이캐스팅 공정의 전체 사이클은 정밀한 비철 금속 부품을 생산하는 데 가장 빠른 것으로 알려져 있습니다. 이는 다음과 뚜렷한 대조를 이룹니다. 모래 주조 주조할 때마다 새로운 모래 주형을 만들어야 합니다. 영구 주형 공정은 모래 대신 철 또는 강철 주형을 사용하지만, 상당히 느리고 정밀하지 않습니다. 다이 캐스팅.

다이캐스팅용 기계의 종류

사용되는 기계의 유형에 관계없이 주조 사이클 동안 다이 하프, 코어 및/또는 기타 이동 가능한 섹션을 제자리에 단단히 고정하는 것이 필수적입니다. 일반적으로 기계의 클램핑력은 (a) 주물의 투영된 표면적(다이 분할 라인에서 측정)과 (b) 다이에 금속을 주입하는 데 사용되는 압력에 의해 결정됩니다. 대부분의 기계는 유압 실린더(때로는 공기압)로 작동하는 토글형 메커니즘을 사용하여 잠금을 달성합니다. 다른 기계는 직접 작동하는 유압을 사용합니다. 안전 인터록 시스템은 주조 사이클 중에 다이가 열리는 것을 방지하기 위해 사용됩니다.
다이캐스팅 기계는 크든 작든 근본적으로 용융 금속을 다이에 주입하는 방식만 다릅니다. 이러한 기계는 핫 챔버 또는 콜드 챔버 다이캐스팅 기계로 분류되고 설명됩니다.

핫 챔버 다이캐스팅 기계

핫 챔버 기계(그림 1)는 주로 아연 및 금속 냄비, 실린더 및 플런저를 쉽게 공격하고 침식하지 않는 저융점 합금에 사용됩니다. 첨단 기술과 새로운 고온 재료의 개발로 인해 이 장비의 사용 범위가 다음과 같이 확장되었습니다. 마그네슘 합금 다이캐스팅.
그림 1: 핫 챔버 머신. 용융 금속에 잠긴 플런저 메커니즘을 설명하는 그림입니다. 최신 기계는 유압식으로 작동하며 자동 사이클링 제어 및 안전 장치가 장착되어 있습니다.
핫 챔버 기계에서는 사출 메커니즘이 기계에 부착된 용광로에서 용융 금속에 잠기게 됩니다. 플런저가 올라가면 포트가 열리고 용융 금속이 실린더를 채우게 됩니다. 플런저가 아래쪽으로 이동하여 포트를 밀봉하면 용융 금속이 구즈넥과 노즐을 통해 다이로 강제 주입됩니다. 금속이 굳으면 플런저를 빼내고 다이를 열면 주물이 배출됩니다.
핫 챔버 기계는 작동 속도가 빠릅니다. 사이클 시간은 1온스 미만의 소형 부품의 경우 1초 미만에서 수 파운드의 주조품의 경우 30초까지 다양합니다. 금형은 빠르게 채워지고(보통 5~40밀리초) 금속은 고압(1,500~4,500psi 이상)으로 주입됩니다. 그럼에도 불구하고 현대 기술은 이러한 값을 정밀하게 제어하여 세밀한 디테일과 정밀한 공차, 높은 강도를 갖춘 주물을 생산합니다.

콜드 챔버 다이캐스팅 기계


콜드 챔버 기계(그림 2)는 사출 플런저와 실린더가 용융 금속에 잠기지 않는다는 점에서 주로 핫 챔버 기계와 다릅니다. 용융 금속은 포트 또는 주입 슬롯을 통해 수동 또는 자동 래들을 통해 "콜드 챔버"로 주입됩니다. 유압으로 작동하는 플런저가 앞으로 전진하면서 포트를 밀봉하여 금속을 고압으로 잠긴 다이에 강제로 주입합니다. 사출 압력 범위는 알루미늄 및 마그네슘 합금의 경우 3,000~10,000psi 이상, 구리 베이스 합금의 경우 6,000~15,000psi 이상입니다.

다이 캐스팅이란?그림 2: 콜드 챔버 머신. 다이어그램은 다이, 콜드 챔버 및 수평 램 또는 플런저(충전 위치)를 보여줍니다.
다이캐스팅은 다른 많은 대량 생산 공정보다 더 정밀한 공차 내에서 복잡한 형상을 제공합니다. 콜드 챔버 기계에서는 다이 캐비티를 채우는 데 필요한 더 많은 용융 금속을 챔버에 부어 넣습니다. 이렇게 하면 캐비티를 주조 합금으로 단단하게 채울 수 있는 충분한 압력을 유지할 수 있습니다. 여분의 금속은 주조물과 함께 배출되며 전체 주조물의 일부가 됩니다.
"콜드 챔버" 기계는 래들링 작업으로 인해 "핫 챔버" 기계보다 작동 속도가 약간 느립니다. 콜드 챔버 기계는 높은 융점을 위해 사용됩니다. 다이캐스팅 합금 플런저와 실린더 어셈블리는 용융 금속에 잠기지 않기 때문에 공격의 영향을 덜 받기 때문입니다.

다이 캐스팅과 그 구조


다이캐스팅 다이(그림 3)는 고정 다이 하프와 이젝터 다이 하프라고 하는 최소 두 개의 섹션으로 구성된 합금 공구강으로 만들어집니다. 고정 다이 하프는 용융 금속 사출 시스템을 향한 측면에 장착됩니다. 다이 캐스팅이 부착되고 다이가 열릴 때 배출되는 이젝터 다이 하프는 기계의 이동식 플래튼에 장착됩니다.

다이의 고정 다이 절반은 용융 금속이 다이로 들어가는 스프 루 구멍을 포함하도록 설계되었습니다. 이젝터 절반에는 일반적으로 용융 금속을 다이의 캐비티(또는 캐비티)로 라우팅하는 러너(통로)와 게이트(입구)가 포함되어 있습니다. 이젝터 하프는 또한 다이에서 주물을 배출하는 메커니즘을 수용하는 이젝터 박스에 연결됩니다. 이젝터 플레이트에 연결된 핀이 앞으로 움직여 주물을 캐비티에서 강제로 꺼낼 때 이젝션이 발생합니다. 이는 일반적으로 기계의 오프닝 스트로크의 일부로 발생합니다. 이젝터 핀의 배치는 이젝션 중에 주물에 가해지는 힘이 변형을 일으키지 않도록 주의 깊게 배치해야 합니다. 이젝터 플레이트에 부착된 리턴 핀은 다이가 닫히면 이 플레이트를 주조 위치로 되돌립니다.
금형에는 고정식 및 이동식 코어가 자주 사용됩니다. 고정된 경우 코어 축은 다음 방향과 평행해야 합니다. 다이캐스팅 금형 열립니다. 움직일 수 있는 경우 코어 슬라이드에 부착하는 경우가 많습니다. 다이 캐스팅 디자인의 측면에 홈이 필요한 경우 하나 이상의 슬라이드를 사용하여 다이 캐비티에서 주물이 배출되는 데 영향을 주지 않으면서 원하는 결과를 얻을 수 있습니다. 모든 이동식 슬라이드와 코어는 신중하게 장착되어야 하며 주조 사이클 동안 제자리에 단단히 고정될 수 있어야 합니다. 그렇지 않으면 용융된 금속이 슬라이드 쪽으로 밀려들어가 작업 중단을 초래할 수 있습니다. 슬라이드와 코어는 금형 제작의 복잡성과 비용을 증가시키지만, 다양한 구성으로 다이캐스팅을 생산할 수 있으며 일반적으로 다른 어떤 금속 가공 공정보다 경제적으로 생산할 수 있습니다.

다이캐스팅 금형 유형

금형은 단일 캐비티, 다중 캐비티, 조합 및 유닛 금형으로 분류됩니다(그림 4-A ~ 4-D).

단일 캐비티 다이에는 설명이 필요하지 않습니다. 다중 캐비티 다이는 모두 동일한 캐비티가 여러 개 있습니다. 하나의 다이에 서로 다른 모양의 캐비티가 있는 경우 이를 조합 다이 또는 패밀리 다이라고 합니다. 조합 다이는 어셈블리를 위한 여러 부품을 생산하는 데 사용됩니다. 단순한 부품의 경우 툴링 및 생산 경제성을 위해 유닛 다이를 사용할 수 있습니다. 어셈블리 또는 여러 고객을 위한 여러 부품은 유닛 다이를 사용하여 동시에 주조할 수 있습니다. 하나 이상의 유닛 다이는 공통 홀더에 조립되고 러너를 통해 공통 개구부 또는 스프 루 구멍에 연결됩니다. 이를 통해 모든 캐비티를 동시에 채울 수 있습니다.

다이캐스팅의 장점


다이캐스팅 구성 부품, 장식 트림 및/또는 완제품은 이 제조 공정을 지정하는 사람들에게 많은 기능, 장점 및 이점을 제공합니다.아연 다이캐스팅

  1. 다이캐스팅은 높은 생산 속도로 생산됩니다. 가공이 거의 또는 전혀 필요하지 않습니다.
  2. 다이캐스팅은 다른 주조 방법으로 얻을 수 있는 것보다 더 얇은 벽으로 생산할 수 있으며, 동일한 치수의 플라스틱 사출 성형보다 훨씬 더 강합니다.
  3. 다이캐스팅은 내구성이 뛰어나고 치수가 안정적이며 고급스러운 느낌과 외관을 가진 부품을 제공합니다.
  4. 다이 캐스팅 금형 는 추가 툴링이 필요하기 전에 지정된 공차 내에서 수천 개의 동일한 주물을 생산할 수 있습니다.
  5. 아연 다이캐스팅 는 최소한의 표면 처리로 쉽게 도금하거나 마감할 수 있습니다.
  6. 다양한 텍스처를 시뮬레이션하는 표면으로 다이 캐스팅을 제작할 수 있습니다.
  7. 다이캐스트 표면은 대부분의 다른 형태의 주조보다 매끄럽습니다.
  8. 다이 캐스팅의 구멍을 코어링하고 탭 드릴 크기에 맞게 만들 수 있습니다.
  9. 부품의 외부 나사산은 쉽게 다이캐스팅할 수 있습니다.
  10. 다이캐스팅은 보스와 스터드와 같은 일체형 고정 요소를 제공하므로 조립 경제성을 높일 수 있습니다.
  11. 다른 금속 및 일부 비금속 인서트는 다이캐스팅으로 제작할 수 있습니다.
  12. 다이캐스팅 합금의 내식성은 양호한 수준에서 높은 수준까지 다양합니다.
  13. 다이캐스팅은 모놀리식입니다. 하나의 복잡한 모양의 부품에 여러 기능이 결합되어 있습니다. 다이캐스팅은 별도의 부품으로 구성되거나 용접 또는 고정되지 않기 때문에 강도는 나사산이나 용접 등이 아닌 재료의 강도에 의해 결정됩니다.
  14. 다이캐스팅 프로세스 생산할 수 있습니다 알루미늄 다이캐스팅, 마그네슘 다이 케이스, 아연 다이 캐스팅, 황동 다이 캐스팅 납 주조 등이며, 모두 쉽게 대량 생산할 수 있습니다.

다이캐스팅은 효율적이고 경제적인 공정으로, 이를 최대한 활용하면 다양한 제조 공정에서 생산되는 다양한 부품의 어셈블리를 대체하여 비용과 인건비를 크게 절감할 수 있습니다.

다른 제품과의 비교


플라스틱 사출 성형 부품

다음과 비교 플라스틱 사출 성형 부품다이캐스팅은 더 강하고, 더 단단하고, 더 안정적인 치수, 더 내열성이 있으며, 특성/비용 면에서 플라스틱보다 훨씬 우수합니다. 또한 무선 주파수 및 전자기 방출을 방지하는 데 도움이 됩니다. 크롬 도금의 경우 다이캐스팅이 플라스틱보다 훨씬 우수합니다. 다이캐스팅은 플라스틱에 비해 하중 하에서 높은 수준의 영구성을 가지며, 자외선, 풍화, 다양한 시약의 존재에 따른 응력 균열에 완벽하게 저항합니다. 다이캐스팅을 생산하는 제조 주기는 플라스틱 사출 성형보다 훨씬 빠릅니다. 그러나 플라스틱은 단위 부피 기준으로 더 저렴할 수 있으며, 색상 고유의 특성으로 인해 마감 처리가 필요 없고 온도에 민감하며 전기 절연성이 우수합니다.

모래 주조

모래 주조와 비교, 다이 캐스팅 훨씬 적은 가공이 필요하고, 더 얇은 벽으로 만들 수 있으며, 모든 또는 거의 모든 구멍을 크기에 맞게 코어링할 수 있고, 훨씬 더 가까운 치수 제한 내에서 유지할 수 있으며, 다이캐스팅을 교체하지 않고 수천 개의 다이캐스팅을 더 빠르게 생산하고, 각 주조마다 새로운 코어가 필요하지 않으며, 인서트 다이캐스트가 쉽게 제공되고, 표면이 더 매끄럽고 주조당 인건비가 훨씬 적게 듭니다. 반면에 샌드 캐스팅은 철 금속과 다이캐스팅에 적합하지 않은 많은 비철 합금으로 만들 수 있습니다. 다이캐스팅으로 생산할 수 없는 형상을 샌드캐스팅으로 생산할 수 있으며, 최대 크기가 더 클 수 있고, 툴링 비용이 적고 소량을 더 경제적으로 생산할 수 있습니다. 자세한 내용을 확인할 수 있습니다. 모래 알루미늄 주조

영구 금형 주조

다음과 비교 영구 금형 주조다이캐스팅은 치수 제한에 더 가깝고 더 얇은 단면으로 만들 수 있으며, 구멍을 뚫을 수 있고, 적은 수작업으로 더 빠른 속도로 생산할 수 있으며, 표면이 더 매끄럽고 일반적으로 다이캐스팅 당 비용이 저렴합니다. 영구 금형 주조는 툴링 비용이 다소 낮고, 모래 코어를 사용하여 다이 주조에서는 얻을 수 없는 형상을 만들 수 있습니다.

단조품

단조품과 비교, 다이 캐스팅 단조품은 더 복잡한 모양을 만들 수 있고 단조할 수 없는 모양을 가질 수 있으며, 단면이 더 얇고, 더 가까운 치수로 유지되며, 단조품에서는 불가능한 코어링을 할 수 있습니다. 그러나 단조품은 다이캐스팅보다 밀도가 높고 강하며, 단조 합금의 특성을 가지고 있고, 철 및 기타 금속과 다이캐스팅에 적합하지 않은 크기로 생산할 수 있습니다.

스탬핑

스탬핑에 비해 다이캐스팅은 하나의 다이캐스팅으로 여러 부품을 대체할 수 있는 경우가 많습니다. 다이캐스팅은 조립 작업이 더 적게 필요하고, 더 가까운 치수 제한 내에서 유지될 수 있으며, 단면 두께에 거의 모든 원하는 변화를 줄 수 있고, 스크랩 낭비가 적으며, 더 복잡한 모양으로 생산할 수 있고 스탬핑으로는 생산할 수 없는 모양으로 만들 수 있습니다. 반면 스탬핑은 단조 금속의 특성을 가지며, 강철과 다이캐스팅에 적합하지 않은 합금으로 만들 수 있고, 더 단순한 형태로 더 빠르게 생산할 수 있으며, 다이캐스팅보다 무게가 더 적을 수 있습니다.

나사 기계 제품

스크류 머신 제품과 비교, 다이 캐스팅 는 더 빠르게 생산되고, 스크랩 폐기물이 훨씬 적으며, 바 또는 튜브형 스톡에서 생산하기 어렵거나 불가능한 모양으로 만들 수 있고, 더 적은 작업이 필요할 수 있습니다. 반면에 스크류 기계 제품은 다이캐스팅이 불가능한 강철 및 합금으로 만들 수 있으며, 단조 금속의 특성을 가지고 있고 툴링 비용이 적게 듭니다.