Aluminum die casting items are of remarkable use in different industry sectors and more so in the aerospace engineering where precision and top standard items is of greatest significance. These items are used in building both little as well as the big components in the aviation industry. Additional, die casting aluminum are used both in the pivotal military sector as well as commercial. The reason for this is easy – they are cost-friendly solutions and provide amazing outcomes.
Apart from being cost effect, the parts made from die casting aluminum are additionally prepared to endure extreme weather situations and increased damages. Another vital reason for using aluminum products in aircraft is that the meal is comparatively affordable than other metals that are die casted. Additional, aluminum has the potential to get with other metals in order to provide durability and much flexible.
With aluminum casted products, you do not have to compromise on the standard yet can them at much affordable production cost. Further, all the standards that have been set for using of metal components, aluminum relax the need to the utmost. Hence, they are certified secure for use in planes, affordable and have all the qualities that are needed for flying crafts. So casting aluminum is on the boost like never before. Further, the top thing about an aluminum die cast part is that its weight is favorable for the aircraft works.
So, how actually is casting Aluminum done and what are the processes involved? Well, the reply is simple. Aluminum alloy is first forced into a top-grade steel at high speed and force in a high temperature. This outcomes in superior standard products that are very light and thin walled perfect for use as aircraft components.
It is to be mentioned here that Aluminum diet casting is a hard technique. Only a truly experienced and top standard team of engineers can make sure that the parts come with top volumes or with excellent tolerances and surface finish. Actually, this type of force casting is far more famous than gravity die casting or sand casting. This is because the need for machining is this type weather for Zinc or aluminum casting is extremely low due to the close casting tolerances. Though the tooling cost in casting Aluminum or rather any metal are considerably higher than the other 2 types yet, the mechanical properties achieved thus are far excellent in terms of functionality.
https://thediecasting.com/wp-content/uploads/2019/10/Aluminum-Aerospace-parts-.jpg250333adminhttp://thediecasting.com/wp-content/uploads/2020/06/cropped-Aluminum-die-casting.jpgadmin2019-10-17 20:12:232019-10-12 20:21:56Aluminum die casting and its importance in Aerospace Industry
Die Casting clamping force is the force applied to a mold by clamping unit of HPDC die casting machine. The clamping force must be grater their separating force.
Which applied by the injection of molten metal into the mold
The clamping fore > separating force
How to calculate the separating force (opening force)?
Opening force is the force acting on the cavity to make the die expand during the production of die casting part. The opening force can be calculated by the following formula:
F=PXA
F: opening force
P: specific injection pressure
A: Total projected area
What is Specific injection pressure?
Molten metal is ladled through the shot hole into the cold chamber and the shot plunger pushes the metal into the die. The pressure applied by plunger to push the metal into the die is specific injection pressure.
Injection pressure use for different type of casting:
For standard casting =600 kg/cm2
For technical casting =600−800 kg/cm2
For pressure testing casting =800 kg/cm2
What is projected area?
The anticipated region is a two-dimensional zone estimation of a three-dimensional article by anticipating its shape on the plane.
Total projected area =casting projected area + slide projected area + runner projected area + overflow projected area
Example
Casting projected areas =56000mm2
Overflow + runner projected area =22400mm2 (40% of total casting projected area )
Slide projected area=projected area must be selected in the plane that is normal to be direction of core travel x tanꬾ
Angle of wedge = angle of finger cam angle + 2degree
Force FY = F X Tan ꬾ
ꬾ = angle of wedge lock
Example:
Slide core 1 projected area=area normal to direction of travel × tanꬾ
=5000× tan20 degree
=5000× 0.36
=1800 m2
Slide core 2 projected area=4500×tan 20degree= 1620mm2 so,
Total projected area= 56000+22400+1800+1620mm2
=81820 mm2
What is separating force (Opening force)?
(For technical casting=600−800 kg/cm2)
(800 kg/cm2 =8kg/mm2)
Opening force = specific pressure ×total projected area
=8 kg/mm2 × 81820mm2
=654560 kg/mm2 (1 ton = 1000kg)
=654.56 T
Die clamping force
The clamping force must be grater then the separating force.
Locking force require =F×1.2
=654.56×1.2
=785.472 tons
We select the 900T machine
What is fill ratio, how it is important for selecting machine tonnage?
It is the percent of liquid metal vulnerable chamber contrasted with the absolute volume of the virus chamber. Another method for saying it would be the level of metal contrasted with the level of air exposed to the harsh elements chamber
For Example
50% full (of metal) = 50% air remaining
The level of fill is significant in light of the fact that it is utilized to ascertain the ideal moderate shot speed.
This can have a quality impact on the casting.
Fill ratio (30-40%) is good for automobile die casting component quality.
http://thediecasting.com/wp-content/uploads/2020/06/cropped-Aluminum-die-casting.jpg00adminhttp://thediecasting.com/wp-content/uploads/2020/06/cropped-Aluminum-die-casting.jpgadmin2019-10-12 20:07:022019-10-12 20:07:02What is die casting clamping force
Die casting is a metal casting process which is characterized by pressing molten metal into the mold cavity. The mold cavity is made using two hardened tool steel molds that are worked on during processing and work similarly to injection molds. Most die-casting is made from non-ferrous metals, especially zinc, copper, aluminum, magnesium, tin, lead, and tin-based alloys. Depending on the type of metal being thrown, a thermal or cold engine is used.
Zinc die casting
The zinc die casting process is very popular for making parts in building and industrial fields, but the most common application is in the automotive industry. In fact, cars have different parts that can be made through die casting, in such a way that the modern process of die casting was originally started for the automotive industry.
With the casting process often no further machining is needed after casting: not only is the accuracy up to 99.8%, but the casted products can also be used raw because they have a pleasant finish. The use of zinc die casting is almost 28% in the automotive industry, followed by the building and hardware sector.
Zinc has become one of the most important metals in the auto parts industry, especially for products such as door lock housing, pawl, gears and retractor pulleys in seat belt systems, but also for camshaft and sensor components. By using this metal and its alloys, it is possible to achieve strength, ductility, and flexibility that would not be possible with other materials.
In addition, zinc can be the right choice to get high-quality aesthetic components, with tight tolerances that are not possible with other materials, and to get embossing and grooves for mechanical components or gears.
Zinc Die Casting Mechanisms in Automotive
As said before, the automotive industry is the most common die casting application: using zinc and its alloys makes it possible to produce components that are able to achieve high aesthetic quality, with tight and narrow tolerance for shape morphology. Zinc alloys are also used for coatings because of its many benefits, such as improving the anti-corrosion properties of zinc which are already impressive.
Below you can find a number of possible examples of zinc plating:
Interior aesthetic section
Sunroofs Section
Mechanical parts
Engine and other underhood components
Power steering system
Parts and brake system
Air conditioning components and systems
Chassis hardware
Parts in the seat belt system
Components of climate control
Fuel system
Advantages for Zinc Die Casting:
An efficient & economical process offering various forms & forms possible.
High-Speed Production
Dimension Accuracy & Stability
Strength & weight
Several finishing techniques are available
Simple Assembly
The Die Casting process began with the use of lead and lead alloys, magnesium and copper alloys which were quickly followed, and in the 1930s, many modern alloys still in use today are available. This process evolved from casting low-pressure injection to modern high-pressure injection of 4,500 pounds per square inch. The modern process is capable of producing high integrity, clean casting forms with excellent surface finishes.
Zinc casting alloy is a strong, durable and cost-effective engineering material. Their mechanical properties are competitive and are usually higher than cast aluminum, magnesium, bronze, plastic and most cast iron.
https://thediecasting.com/wp-content/uploads/2019/09/Zinc-die-casting.jpg250305adminhttp://thediecasting.com/wp-content/uploads/2020/06/cropped-Aluminum-die-casting.jpgadmin2019-09-28 14:25:252019-09-20 14:42:18The importance of zinc die casting in the automotive industry
The 1st step is to prepare the die halves for casting by cleaning the faces of each die then applying lubrication or release agent.
Once the die has been prepared, the die halves are closed and clamped together with pressure applied from the die-cast machine.
The clamping force will depend upon the size of the machine but must be more than the opposing force trying to open the die during the casting process.
The injection phase:
The ingots are added to the furnace and kept molten at a set temperature according to the metal being used.
The molten metal is transferred to an injection chamber and injected into the closed die pressure ranging from 1000 to 20,000 psi.
The pressure is maintained while the metal solidifies.
The amount is injected into the die is known as the ‘shot’
The injection of metal into the die is very short, this ensures the metals do not start to solidify before the die is completely filled.
The cooling phase:
After the injection is complete, the molten metal needs to solidify before the die is opened.
The cooling time will depend upon the part geometry as well as the metal thermodynamic properties.
The wall thickness of the parts plays a big factor in the cooling time, the thicker the wall section the longer the cooling time required.
The ejection phase:
After the cooling time has elapsed, the two die halves can be opened.
An ejection mechanism then pushes the solidified casting out of the die.
The force of the ejection will be determined by the size of the part, bearing in mind, the part shrink during the cooling process and tends to stick to the die surface.
Once the part has been ejected, the die can be closed ready for the next injection cycle.
The trimming phase
During the cooling and solidification phase, the casting will solidify as a complete cast unit which includes the part, flash, and any runner system
This excess material must be trimmed off to leave just the main cast product.
Method of trimming includes trim tools, band saw are manually clipping.
Any trimmed metal is either scrapped or recycled if permitted.
Advantages of die casting:
Die casting is fast
Die casting can be produced in seconds each part and quantities of hundreds to thousands of metal parts each day.
Near net shape
Die casting are produced “near net shapes” no matter how complex the shape are how tight the tolerances are.
Lighter weights
Die casting are stronger because of the material surface skin not the thickness of materials so parts can weigh less with thinner casting wall thicknesses.
Die casting is versatile
Many more part shapes and sizes can be produced using the die casting manufacturing process.
Die casting are durable
Die castings parts are metal and have a long service life.
Die castings are inexpensive
Die castings are fast to produce and useless material. Die casting are typically less expensive than most other metal parts manufacturing processes.
https://thediecasting.com/wp-content/uploads/2019/04/Die-Casting-manufacture-company.jpg300400adminhttp://thediecasting.com/wp-content/uploads/2020/06/cropped-Aluminum-die-casting.jpgadmin2019-09-25 10:28:042019-09-16 10:31:28The Die Casting Process Step By Step
The process of die casting with pressure injection can be followed until mid-1800. The components used were tin and lead, but the use has disappeared with the introduction of zinc and Aluminium alloys. This process has evolved over the years, from low-pressure injection molds to casting molds at pressures of up to 4,500 psi. The process can create high-quality products with excellent end surfaces.
Die Casting is an economical and efficient process for making various shapes. Considered superior to other manufacturing techniques, it is durable and aesthetic and combines perfectly with other parts of the machine that are part thereof. Dying has many advantages. Among these, the main is its ability to produce complex forms with a higher tolerance level than other mass-production methods. Thousands of identical prints can be produced before you need to add new mold tools.
Zinc die casting
High Die-pressure is a manufacturing process where aluminum that has been melted is injected by a casting machine under extreme pressure on steel or molds to make the design and detail parts of the model you want to make. Casting in tons of universal tightening. This record reflects the amount of pressure given on the matrix. The engine size varies from 400 to 4000 tons.
There are many advantages to using the die casting process compared to others. Die casting produces parts with thinner walls, narrower size limits and processes can be accelerated. Labor costs and finishing are the lowest with the dice. This process facilitates to obtain intricate forms with narrower tolerances. Unlike the forgery process, you can insert the kernel into the product created by this process.
Forms that cannot be obtained from rods or tubes can be easily achieved with casting. The number of operational processes is smaller, which leads to the reduction of waste materials.
Die casting is used when you need a stable, dimensional and durable component. They withstand heat and maintain a good level of tolerance, an important condition for each part of a good machine. They are stronger and lighter than the part made by other printing methods. Its parts are not welded or screwed, which greatly increases its efficiency. Another advantage is the many workarounds that you can get with the launch. Surfaces can be smooth or textured, which facilitates the application and its use.
Hopefully, this information can help you and thank you for reading the article about Zinc Die casting.
https://thediecasting.com/wp-content/uploads/2019/09/Zinc-die-casting.jpg250305adminhttp://thediecasting.com/wp-content/uploads/2020/06/cropped-Aluminum-die-casting.jpgadmin2019-09-14 10:19:392019-09-14 10:19:39Favorable Manufacturing For Zinc Die Casting Processes
Your High-Quality Source For Aluminum, Magnesium and Zinc Die Castings; Machined and Finished, Ready For Assembly.
Setting product quality as the company goal, CNM Die Casting has risen to the top of its industry during the past ten years.
Die casting buyers to look to CNM TECH to help reduce reject problems they have encountered with other component part suppliers. A manufacturer of natural gas valves experienced reject levels of up to 40% until they were cast by CNM TECH. Now, very few of their parts fail to meet a rigorous 100% testing level for pressure leaks.
Quality based on engineering experience
At CNM TECH Die Casting company, quality begins with experienced engineering assistance. Consultation on part design and aluminum alloy selection are part of the service. Sometimes minor changes in part design can increase production rates and eliminate potential quality problems. The end result is a better part at a lower unit cost.
To be sure finished die casting parts to meet alloy specifications, both incoming materials and finished product samples are checked on the Jarrell-Ash spectrometer.
Quality that moves with production instead of just a final part check
Production starts after a final part design is accepted. Our quality control program then begins a series of checks to determine that the part has been produced within the specified tolerances. First, alloys are tested to make sure they meet our customer’s specifications. Then, statistical sampling during the casting and machining processes provides an early warning of manufacturing defects and helps to prevent the production of defective finished parts. Inspection frequencies can be predetermined by the job requirements to make certain that the parts you receive are parts you can use.
A Three Coordinate Measuring Machine (CMM) allows completed part dimensions to be checked against computer-stored specifications to assure that accuracy has been maintained throughout the entire production run. Fatigue testing for completed parts can also be carried out under simulated operating conditions if required by the customer.
Whether your specifications call for pressure tightness, critical dimensions and details, or freedom from subsurface discontinuities, CNM TECH quality assurance people have the equipment and training for the job.
A regular inspection program on casting and machining equipment helps us maintain close tolerances. Equipment that’s in top operating condition benefits our customers in both reduced costs and shorter lead times. In-plant maintenance personnel can quickly correct machine problems and smooth production flow.
This online catalogue will introduce you to our capabilities and give you a brief tour of our facility. Over 150 employees share our interest in providing on-time delivery of ready-for-assembly die casting parts and our objective of striving for the highest quality.
CNM TECH engineers are available for consultation at early design stages to help assure finished parts meet tolerance and quality requirements while making economical use of die casting processes.
The dimensional coordinate measuring machine is used to measure castings against specified tolerances.
Proven, rigid quality assurance techniques applied at CNM TECH Die Casting manufacturer can meet the most demanding industrial standards.
https://thediecasting.com/wp-content/uploads/2019/05/Die-Casting-Parts.jpg300375adminhttp://thediecasting.com/wp-content/uploads/2020/06/cropped-Aluminum-die-casting.jpgadmin2019-05-02 23:40:182019-06-08 11:40:52High Quality Die Casting Parts
CNM Die Casting has the ability to offer various castings including die casting, investment casting, permanent mould casting, and sand casting for a wide range of alloys, including all die-cast alloys, many permanent mold alloys, and many magnesium alloys.
Our manufacturing processes have been accepted by the world casting market as equal or superior to conventional die casting.
Benefits of the CNM Die Casting Process
Better dimensional control
Improved cross parting line tolerances
Reduction in gas porosity
Improved balance properties of finished rotating parts
Use of “cast-in-place” inserts
Improved mechanical properties due to effective alloy modification
Better wear properties due to smaller grain size microstructure
Improved flexibility regarding alloys and types of castings
Machining
CNM Die Casting’s Machining Section utilizes the work cell concept and high-speed flexible machining equipment to complete secondary operations to CNM’s castings so that a part or subassembly is ready to install when it leaves our facility.
CNM Die Casting has evolved and responded aggressively to customer demands for providing high-speed machining and assembly services without initial capital expenditures. By factoring a portion of the cost of the existing equipment into each part, the customer benefits from faster set-ups and minimal initial capital outlays.
CNM Die Casting operates 8 die cast machines, complete in-house die casting mold making and CNC machining in an over 20,000-square-foot facility in DONGGUAN, China.
Our integrated manufacturing capabilities, together with over 100 employees, allow us to be your One-Stop, complete service die caster, and be consistently price competitive, while also maintaining a high standard of quality.
http://thediecasting.com/wp-content/uploads/2020/06/cropped-Aluminum-die-casting.jpg00adminhttp://thediecasting.com/wp-content/uploads/2020/06/cropped-Aluminum-die-casting.jpgadmin2019-04-19 11:33:522019-06-08 11:41:33Die Casting Process
Metal casting services involve the shaping of free-flowing liquid metals through the use of dies, molds, or patterns. Castings are generally roughly finished due to the nature of their production. In many cases, additional finishing is required to remove burrs and other artefacts of the casting process. Metal castings services are used to design a wide range of components and finished products. Everything from simple nails and fasteners to engine blocks can be fabricated using metal casting services. Common metal casting processes include sand casting, die casting, permanent mold casting, investment casting, centrifugal casting, and lost foam casting.
Sand casting is used to make large parts (typically iron, but also bronze, brass, aluminum). Molten metal is poured into a mold cavity formed out of sand (natural or synthetic). Sand castings generally have a rough surface, sometimes with surface impurities and surface variations.
zinc Die Casting
Die-casting includes a number of processes in which reusable dies or molds are used to produce casting. The die contains an impression of the finished product together with it’s running, feeding and venting systems. The die is capable of a regular cycle and of (quickly) dissipating the heat of the metal poured into it. Once the liquid metal has cooled sufficiently, the mold is opened and the casting can be removed and finished.
In permanent mold casting, molten metal is poured into cast iron molds, coated with a ceramic mold wash. Cores can be a metal, sand, sand shell, or other materials. When completed, the molds are opened and the castings are ejected.
Investment casting services involve molding patterns by the injection of a special wax into a metal die. The patterns are assembled into a cluster around a wax runner system. The ‘tree’ of patterns is then coated with 8-10 layers of refractory material. The assembly is heated to remove the wax. The hot mold is cast, and when cool, the mold material is removed by impact, vibration, grit blasting, high-pressure water blasting or chemical dissolution leaving the castings, which are then removed from the runner system.
Centrifugal casting
Centrifugal casting services are used to produce castings that are cylindrical in shape. In centrifugal casting, a permanent mold is rotated about its axis at high speeds as the molten metal is poured. The molten metal is centrifugally thrown towards the inside mold wall, where it solidifies. The casting is usually a fine grain casting with a very fine-grained outer diameter, which is resistant to atmospheric corrosion, a typical need with pipes. The inside diameter has more impurities and inclusions, which can be machined away.
magnesium die casting
Lost foam casting
Lost foam casting (LFC) is metal casting services that use foam filled patterns to produce castings. Foam is injected into a pattern, filling all areas, leaving no cavities. When molten metal is injected into the pattern, the foam is burned off allowing the casting to take shape.
Die casting
Die casting and metal casting includes a number of processes in which reusable dies or molds are used to produce casting. The die is capable of a regular cycle and of (quickly) dissipating the heat of the metal poured into it. Once the liquid metal has cooled sufficiently, the mold or is opened and the casting can be removed and finished.
In the die casting process, molten metal is injected under pressure into a reusable mold or die. The die contains an impression of the casting together with it’s running, feeding and venting systems. The die is capable of a regular cycle and of (quickly) dissipating the heat of the metal poured into them. Once the liquid metal has cooled sufficiently, the mold or is opened and the metal casting can be removed and finished.
The high pressure die casting process is the most widely used, representing about 50% of all light alloy casting production. Low pressure die casting currently accounts for about 20% of production and its use is increasing. Gravity die casting accounts for the rest, with the exception of a small but growing contribution from the recently introduced vacuum die casting and squeeze casting process. the design of low pressure and gravity die casting dies for improved die filling, optimized solidification pattern and maximum yield. Gravity die-casting is suitable for mass production and for fully mechanized casting. Low-pressure die casting is especially suited to
Aluminum Die Casting
the production of components that are symmetric about an axis of rotation. Light automotive wheels are normally manufactured by this technique.
Die casting metals can vary widely, and different die casting companies may have the ability to work with anyone or number of them. Some of the most common metal casting types include aluminum die casting, brass die casting, lead die casting (the most popular for model die casting), magnesium die casting, and zinc die casting.
Hope all of that information is enough for your reference, but if you want to know more information, you are welcome to contact us by phone or email.
Metal casting is highly crucial in modern manufacturing. It is technically shaping the whole world. As you know, you can create a wide range of metal parts from this method. High Pressure Die Casting is one of the most popular metal casting methods here.
A typical metal casting method pours molten metal into a mold to create complex and precise shapes. Every industry needs these casting parts for many applications. They may need them for structural support or in their main products.
One popular way to shape metal is through die-casting, and high pressure die casting is one of the most common die-casting methods. This method is what this article is mostly about. You will learn about how they are made, their benefits, and how they can be used. You will also find out how HPDC and LPDC are different.
Overview of High Pressure Die Casting (HPDC)
HPDC stands for High-Pressure Die Casting. As the name suggests, this metal casting method needs high pressure. HPDC casting is suitable for making many metal parts with high tolerances.
In HPDC die casting, molten metal is injected into a steel mold or die at high speeds and pressure. As a result, you can create hundreds of casting parts in less time. The pressure needed here is to ensure that the molten metal fills the detailed feature of the die. Because of this, high-pressure die casting is suitable for high-volume production.
An high pressure die casting machine is made up of several primary components. All of them are very important to the system. You might also find other parts, though. However, these four parts are the most important things in high pressure die casting process. They usually decide how good the casting parts are in the end.
Die Cast Molds
Die-cast molds, or dies, are high pressure die casting machine parts that generally determine the final shape. They have two main halves: stationery and movable. They are usually made from high-strength steel. Making these HPDC die-cast molds is called high pressure die casting tooling. Note that HPDC tooling is crucial for the best quality of metal casting.
Ejector Pins
Ejector Pins are another important components in high pressure die casting mold. They facilitate the removal of the solidified cast from the die. You can find these pins within the movable die half. Once your metal casting is cooled and solidified, you can actuate these pins to remove it. It mainly plays a crucial role in the production cycle.
Cold chamber die casting machine
Cold chamber die casting machine is a most important machinie which has injection system, press system, ejection systems and so on. all of die casting process will be done by this cold chamber die casting machine.
Heating Components
Heating components may include furnaces and heating elements. They typically do not melt the metal but keep the temperature constant. The main goal of this high pressure die casting machine part is to ensure the metal is in liquid form. Note that consistent heating is crucial for the quality and consistency of the final castings.
How DoesHigh Pressure Die Casting Work?
Generally, high pressure die casting works in five steps. Each step is crucial for the final quality of the castings. Therefore, when starting a die-casting process, always inspect the device. Check for any defects or loose screws. Always tune your device to its optimal settings. Check whether the cooling system is properly working or not.
Once you have checked your device correctly, you can proceed to the primary high pressure die casting process. Always wear safety gear, such as gloves, clothes, and glasses.
Step #1 Preparing the Die Cast Mold
You can prepare the high pressure die casting mold in two main steps. First, if it has already been made, check it for defects and contamination before using it. Second, designing the mold is necessary for customized products.
Designing a die-cast mold has several stages. First, you can draw your design using 3D software like SolidWorks, AutoCAD, and more. Ensure you have properly organized the gate runner and mold base when designing it. The cooling system is also a crucial part of this design process. Finally, check the venting & ejection system.
Once you are done with the design, proceed with the draft analysis. You can check its functionality on various simulation software. After testing and quality inspection, you can use the die casting tooling for your final production.
Step #2 Molten Metal Injection
In this HPDC casting process, the machine injects molten metal into the die cavity. Unlike other methods, high-pressure casting uses high pressure and speed for this job, which is why it is called high-pressure die casting.
First, tightly connect the two halves of the die-casting mold. Then, with a button push, the HPDC machine forces the molten metal into the chamber. This pressure technically ensures that the molten metal fills the entire cavity. Once the injection is done, the molten metal is allowed to cool and solidify.
Two primary injection methods are used in the HPDC die-casting system. You can choose the correct method for the job based on your project needs.
Hot Chamber Injection
When your injection mechanism is immersed in the molten metal reservoir, it is called hot chamber injection. When the plunger moves, it draws the molten metal into the chamber and injects it into the die cavity. This type of injection is suitable for metals with low melting points. You may often find this hot chamber die casting machine is used zinc and magnesium alloys.
Cold Chamber Injection
Cold chamber injection, on the other hand, uses a separate melting furnace. You can pour the molten metal using a manual or automated system. In manufacturing, the automatic system is generally operated by a hydraulic plunger. It forces the molten metal to insert into the mold cavity. Cold chamber injection is a common technique for aluminum HPDC casting.
Step #3 Cooling & Solidification
After injection, the molten metal quickly cools within the die cavity. Some factories, like CNM TECH, use controlled cooling. During this time, you must ensure proper solidification.
Note that adequate cooling is mainly necessary to avoid defects. As you know, several defects occur due to inappropriate cooling. Some defects are hot spots, cold shuts or misruns, shrinkage, and porosity.
Cooling channels within the die typically stabilize the temperature. You must ensure these cavities are correctly designed when designing a die-cast mold. At CNM high pressure die casting Factory, our experienced engineers always test these cooling systems. Thus, our metal casting has almost zero defects.
Step #4 Ejection
Once the metal alloy part has cooled and solidified within the die, eject it using the ejector pins. Carefully do this step to avoid any external damage. The ejector pins usually facilitate this removal process. They are on the movable part of the die-cast mold.
Step #5 Trimming & Finishing
After removing the metal part, you may find some extra material on the body. You may need some additional finishing processes to get it in good shape. You can perform trimming, grinding, or other surface treatment methods.
The trimming method usually removes excess material from the metal part. It can be manual or automated. However, a smooth surface may need grinding, sanding, or machining. These methods can help you achieve the desired dimensions.
If you need more finishing, you can use different aluminum surface treatments. There are many ways to do this. These techniques can help your HPDC casting parts be more robust and less likely to rust. The most common methods are black or clear anodized aluminum, painting, powder coating, e-coating, and more.
After all this, your HPDC casting parts may need testing for certifications. Note that certifications create customer trust and reliability in real applications.
What are the Key Features of High-Pressure Die Casting?
In the previous section, we discussed the HPDC die-casting process in detail. As you know, in the HPDC casting process, the machine pours molten metal into the die or mold cavity at high pressure and speed. This technically provides several advantages. Let’s check them one by one.
Feature #1 High Precision Metal Parts
One of the best benefits of the HPDC casting process is the precision. Using this tech, you can achieve very high accuracy. According to experts from various industries, this tolerance ranges from ± 0.016mm to ± 0.12mm.
Feature #2 Work with More Complex Designs
HPDC die-casting process also allows you to work with more complex designs. As you know, high-pressure forces molten metal to fill a detailed mold cavity. This means that these molten metals can reach every detail of the design. Most aluminum intricate metal parts are made through the HPDC casting process.
Feature #3 Better Surface Finish
The HPDC casting process also produces a better surface finish. The molten metal fills every corner of the mold cavity under high pressure. Because of this pressure, the density of the metal part also remains the same. Because of this, the surface gets a better result after it cools.
Feature #4 Increased Productivity
The high-pressure die-casting process works very fast. In some manufacturing, this process is fully automated. However, whether manual or automated, it is still faster than other methods. Because of this, you can make hundreds of metal parts in less time. This increases your productivity and reduces costs.
Feature #5 Work with Thinner Wall Products
Again, the high-pressure molten metal fills every corner of the mold cavity. This technology allows you to work with thinner-walled products. Some typical examples are engine components, housings, and heat sinks.
Feature #6 Better Quality
High-pressure casting parts are famous for their high quality and consistency. The controlled process parameters and precise molds always give you uniform castings. This consistent quality ensures better mechanical properties. Specifically, the casting metal parts can have more strength and durability.
Feature #7 Durable Dies
Finally, the tools used in HPDC casting are usually made of good steel. These molds or dies can easily handle high pressure repeatedly. Overall, durable dies eliminate the need for frequent replacement. Once created, they can make thousands of metal parts repeatedly, reducing production costs.
What Materials Are Compatible with High-Pressure Die Casting?
Although HPDC casting can work with most types of metals, it is uncommon. The most common materials people usually use are aluminum, magnesium, and zinc. Ferrous metals are especially not ideal because they are more prone to rust.
Aluminum
Aluminum is one of the most used materials in HPDC casting. This metal has a high strength-to-weight ratio and is 100% recyclable. Aluminum is also famous for its excellent corrosion resistance. Compared to its weight, aluminum can withstand large loads. You may find its use in construction, automotive, and aerospace.
Moreover, aluminum has good thermal and electrical conductivity. Thus, it is often used in house appliances and various electrical gadgets.
Magnesium
Magnesium is also a lightweight metal used in HPDC casting. Although it is not as famous as aluminum, magnesium is also prevalent in many applications. It is especially suitable for use where weight reduction is crucial. You can use it in vehicle seats, trolleys, laptops, or cameras.
Magnesium is strong and easy to machine. You can give it a complex shape and intricate details. In addition, you can use it for various dampening applications.
Zinc
Zinc alloys are another famous material used in high pressure die casting. They are typically renowned for their excellent fluidity and low melting point. However, zinc alloys have better dimensional stability. You can create complex shapes with thin walls.
Zinc alloys are also resistant to impact and suitable for long-lasting performance jobs. They are mainly used in decorations, but other applications include locking tools, gears, and various car parts.
The Use of HPDC Casting in Various Industries
HPDC die-casting parts are prevalent in many industries. They are versatile, and people use them in many applications. Since HPDC offers several features, we can find its use in the following sectors:
Automotive Industry
Automotive is a common place for HPDC castings. Engine blocks, transmission gears, gearbox housings, and other aluminum parts are typical. Like car seats, high-pressure casting can also be used for various structural supports.
As you know, HPDC casting makes strong and light parts, which is very important in the car industry.
Consumer electronics
Another popular place for HPDC casting parts is consumer electronics. You may find these castings in smartphones, laptops, cameras, and other electronic devices.
As you know, the high-pressure casting process ensures these components meet tight tolerances. Other finishing methods can achieve aesthetic appeal.
Medical Equipment
It is crucial in the medical field to use light and precise materials. HPDC casting lets you make metal parts that are of high quality and meet tight tolerances.
Various diagnostic devices and surgical equipment also use HPDC castings. Moreover, various device housings are also made of high-pressure castings.
Defense Industry
The need for lightweight parts is critical in defense. They make military trucks more mobile, faster, and better at using fuel. Because of this, operations are more efficient and easier to move and set up.
Most importantly, lightweight materials provide tactical benefits in various combats. Weapons, military vehicles, and communication gadgets are all examples.
Aerospace Industry
This industry mainly relies on HPDC casting parts. Most airplanes need strong and light parts. Engine parts, housings, and brackets are common HPDC airplane items.
What is Aluminum HPDC Casting?
Aluminum HPDC casting is the most common high-pressure die casting. The process is all the same, but the material is aluminum. However, HPDC aluminum is suitable for various reasons.
HPDC aluminum parts are trendy because they are precise. Their high-quality finish also makes them ideal for many jobs. As discussed in the previous section, people use these parts in many fields.
Also, aluminum HPDC castings are strong and last a long time. They are strong for how light they are compared to their strength. So, you can use them in many places where support is needed, like car seats.
As you know, aluminum HPDC casting works with high pressure and speed. Thus, it can produce hundreds of parts in less time. Therefore, high-pressure aluminum die casting is cheap per unit.
HPDC aluminum alloys are also prevalent in a variety of structural applications. Some of the structural parts of your car are made of HPDC aluminum alloys, as well as the engine blocks and chassis.
Common aluminum alloys used in HPDC include A380, A383, and A360. A380 or A383 are suitable for strength and corrosion resistance. On the other hand, the A360 offers excellent pressure tightness. These alloys have unique benefits in HPDC casting processes.
High-Pressure Die Casting vs. low-pressure Die Casting (HPDC vs LPDC)
Both high-pressure die casting and low-pressure die casting are prevalent in real-world applications. However, each has its unique benefits and uses. We have already learned so much about HPDC. Let’s compare HPDC die casting with LPDC die casting in the following table.
Feature
High-pressure Die Casting (HPDC)
Low-Pressure Die Casting (LPDC)
Process
Molten metal is injected into a die at high pressure and speed.
Molten metal is forced into a die by low pressure and speed.
Pressure range
High (1500 to 25000 psi)
Low (2-= to 15 psi)
Die Construction
Steel dies are used, often complex, multi-part
Steel or iron dies, typically simpler and less complex
Speed
Very fast, suitable for high-volume production
Slower compared to HPDC, leading to longer cycle times
Surface finish
Excellent with smooth surface and fine details
Good, but generally not as tight as HPDC
Accuracy
High, with tight tolerances, usually ranges between ± 0.016mm and ± 0.12mm.
High, not as accurate as HPDC
Complexities
Can produce highly complex parts with thin walls
Suitable for moderate complex parts with thicker walls
Tooling cost
Higher initial cost due to complex dies
Lower initial cost due to simpler dies
Cooling rate
Fast cooling
Slower cooling rate
Typical Alloys
Mostly aluminum, magnesium, and zinc alloys
Mostly aluminum alloys with some use of magnesium and copper
CNM TECH – Custom HPDC Casting Services
CNM TECH is high pressure die casting company in China, it is founded in 1999 and backed by a family that has 18 years of experience in high pressure die casting manufacturing business. This factory generally does cast and different kinds of machining. You can get OEM metal parts, custom metal parts, and other metal parts. One of the main things they do is high-pressure die casting (HPDC).
We offer custom metal parts solutions. Whether you are looking for OEM metal parts, custom HPDC castings, small- to medium-large volume aluminium die casting, magnesium die casting,zinc die casting, or prototypes, CNM TECH is the factory you need. We have the latest machinery and testing equipment and offer various certifications. As a result, we are capable of meeting diverse client needs. Overall, CNM TECH provides reliable and affordable casting services.
With our ISO 9001 certified production and quality control systems, we provide global customers with the highest quality pressure die casting services. In addition, we offer secondary operations and light mechanical assemblies. such as surface finish including powder coating, nodizing, e-coasting, painting etc. CNM TECH. is one of the best internationally known high pressure die casting companies in the world. Our experienced and English-speaking engineers and our worldwide sales staff provide excellent pre-sale and production support.
Services We offer
High pressure die Casting parts and molds in aluminum, magnesium and zinc alloy
Light Mechanical Assembly, including stud and helicoil inserts, O-ring, gasket
Laser Cutting and Engraving
Etching
If you need any supporting in die casting parts you are welcome to contact us, we would happy to support, no matter you need technical supporting or price for your project.
FAQs
Can steel be a pressure die-cast?
You can pressure die-cast stainless steel, but it rarely happens. Aluminum, magnesium, and zinc are popular metals that can be used for high-pressure die casting (HPDC). Steel has a high melting point. Simply put, its qualities make it unsuitable for HPDC casting. You can still do the pressure die-cast, but it might cost more than you thought to make.
What products are made by high-pressure die casting?
You can create a variety of products using HPDC technology. As you know, high-pressure die casting uses high pressure and speed to make each component. As a result, you can create better quality and more complex designs. Some HPDC castings are engine blocks, surgical equipment, laptops, and more.
What is casting pressure in HPDC?
Casting pressure is usually the force used in the HPDC casting process. This pressure usually forces the molten metal to reach every corner of the mold cavity. However, it typically ranges from 1500 to 2500 psi. The exact pressure depends on the type of design and metals.
What grade of aluminum is used for high-pressure die casting?
The most common grade of aluminum used for HPDC casting is A380. The A380 is the most common alloy in die casting because it is strong and easy to work with. This alloy usually has more fluidity than A360. Thus, A380 is more suitable than A360 for the high-pressure die-casting process. Besides, the A380 offers excellent dimensional stability and conductivity.
Summary
High-pressure die casting (HPDC) creates metal parts at high pressure and speed. The pressure usually ranges from 1500 psi to 2500 psi. HPDC casting is a fast and efficient method for making complex shapes.
Aluminum HPDC casting is the most common. A380 aluminum alloy is more prevalent in this case. Aluminum is strong, lightweight, and offers excellent corrosion resistance. Thus, it is often used in many applications.
If you have any questions, feel free to contact us today. We offer all types of casting and CNC machining services, and our team of experts is always happy to assist you.
Different Between Aluminum Die Casting and Gravity Casting
Aluminium Die Casting is more than just an excuse to play with the molten metal it is actually a great way to create art and complicated pieces of machinery or other items that would otherwise be nearly impossible to make. Aluminum die Casting is really a great way to save money…while playing with molten metal.
The reason that aluminum die Casting has survived the test of time is a matter of efficiency. Some of the earliest casting examples have been found in China dating back thousands and thousands of years. In fact, every major civilization from the Egyptians to the Romans practised aluminum casting. This skill came back into vogue during the Renaissance and has continued to advance and evolve from there. While Sand Casting is the most popular casting process there are many, many more processes available to the backyard foundries.
Not everyone is going to be casting heavy pieces like engine parts or cast their own motorcycles. So for those that just want to make decorative pieces, you will not be using the same casting process as these heavy duty casters. For artists creating small scale statues or embellishes and for hobbyists that need a decorative touch to their model plane or boat might want to consider using gravity casting for their needs.
What is Gravity Casting
Gravity Casting seems to be especially useful when dealing with aluminum and other light alloys. The basic idea behind this casting process is pretty much exactly what the name suggests. The metal is introduced into the mold by the force of gravity. Most other casting process either use natural pressure difference like the kind in certain sand casting procedures or they use forced pressure like in centrifugal casting to get the molten metal into the mold.
One of the most common uses for gravity casting is when permanent molds are going to be used. Also called a die, the permanent mold is really only economical for those planning on using the same mold numerous times and will need to keep the quality at a constant level. While some temporary molds can be repeatedly used the quality of the finished product will begin to suffer over time. With die molds the quality will remain the same. Die molds should be seen as an investment. Yes, they will be more costly than other molds; however, they will outlast cheaper options for molds. With Permanent molds, they are created using cast iron, steel, and other metals.
Gravity casting is used for the permanent mold process with pleasing results. Gravity casting is usually used when the finished product is more visually based then structurally based which is why this method is a favourite of artists and even some jewellers. The loss of strength is due to the lack of pressure used in this process. For those that need the strength but still want to use gravity casting, more of the molten metal will need to be used which will increase the weight. go to https://www.aludiecasting.com/ to know more about gravity casting
Relying on gravity will take patience, although it will be needed for larger products.
If you need gravity casting or aluminum die casting, magnesium die casting or zinc die casting service for your business. You are welcome to send us your requirement for quote, you only need to send us your 3D part design and your requirement, then you can sit back and we will do there rest for you, to work with us you only need to take care of the market at your side, and we will be your back up to take care of lead time, shipment, quality and technical.